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Massive wildlife losses over the past 50 y have brought new
urgency to identifying both the drivers of population decline and
potential solutions. We provide large-scale evidence that air pol-
lution, specifically ozone, is associated with declines in bird abun-
dance in the United States. We show that an air pollution
regulation limiting ozone precursors emissions has delivered sub-
stantial benefits to bird conservation. Our estimates imply that air
quality improvements over the past 4 decades have stemmed the
decline in bird populations, averting the loss of 1.5 billion birds,
∼20% of current totals. Our results highlight that in addition to
protecting human health, air pollution regulations have previously
unrecognized and unquantified conservation cobenefits.
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Air pollution is widely recognized as a leading cause of human
morbidity and mortality (1–7). Regulation of anthropogenic

emissions, especially the combustion of fossil fuels, is key to al-
leviating global health burdens from pollution exposure. Indeed,
air pollution policies, such as the US Clean Air Act, have im-
proved ambient air quality, reduced disease incidence, and in-
creased life expectancy (8, 9). Quantifying the impacts of both
pollution exposure and regulation has been largely restricted to
humans, and our understanding of benefits to nonhuman
species—many of which are sensitive to pollution—remains
poor. The physiology and unique respiratory systems of birds, in
particular, should make them especially susceptible to air pol-
lution (10–14). For this reason, birds are a useful focal taxon to
examine how policy interventions for air pollution may deliver
broader benefits to ecosystems.
We provide continental-scale evidence that ground-level

ozone negatively affects the North American avifauna, a group
of animals that are well-known indicators of environmental
health and one of the only groups for which abundance data are
available at fine resolution across broad spatial and temporal
scales (15–18). We then analyze how the US Environmental
Protection Agency (EPA) NOx Budget Trading Program (NBP),
an air quality regulation that was designed to protect human
health by limiting summertime emissions of ozone precursors
from large industrial sources, has provided substantial conser-
vation cobenefits for avifauna.
Current understanding of the impact of air pollution on birds

is limited to case- or laboratory-based studies on the toxicology
of pollution exposure, whereas species- or continental-scale im-
pacts are largely unknown (10, 11, 14, 19–23). We expand the
spatial and temporal lens of previous studies to better under-
stand the extent to which pollution contributed to population
declines in North American birds, which have lost a staggering
2.9 billion breeding individuals over the last 50 y (24). A rough
calculation based on our estimated ozone response suggests that
observed declines in bird populations would have been 50%
greater in the absence of reductions in ground-level ozone since

1980. In short, the regulation of ozone has led to an additional
1.5 billion birds, ∼20% of current populations.
There are several ways in which ozone is expected to harm

individual birds in ways that can scale up to affect population size
and trends. High levels of ozone can directly impact birds via
physical harm, such as damage to respiratory systems, or indi-
rectly via changes to habitat conditions, food supplies, and/or
species interactions. There exists strong evidence that elevated
ozone reduces primary productivity, inhibits growth rate and
biomass of plants (especially deciduous trees), reduces plant
species richness and community composition, chemically im-
pedes plant–pollinator interactions, changes foliar quality and
content of nitrogen, increases plant susceptibility to damage and
disease, impacts soil microbial communities, and increases sec-
ondary (defensive) plant compounds to reduce herbivory by in-
sects, which in turn have lower biomass and higher rates of
mortality (25). For example, the literature shows that ozone
damages plants in ways that affect growth, architecture, and
chemical composition, including the secondary compounds used
to defend against herbivory from insects. Likewise, research has
found 17% lower arthropod abundance when ozone levels were
elevated compared to normal ambient levels which may harm
insectivorous birds (26). When access to high-quality habitat or
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food resources is reduced, mortality of individuals (adults, ju-
veniles, and nestlings) may increase due to immediate health
consequences or longer-term impacts that carry over across
seasons. For example, a bird that has insufficient energetic re-
serves is more likely to die during migration, which reduces the
population by way of the loss of that individual and its future
reproductive productivity. Even in less severe cases, that indi-
vidual may produce fewer young than it would have otherwise.
Our analysis is based on bird observations across the contig-

uous United States between 2002 and 2016, derived from over 11
million eBird checklists (27). Following the literature (24, 28),
we develop a statistical model to estimate changes in bird
abundance over time, based on the counts of birds reported. We
model the count of birds in each eBird checklist, while ac-
counting for effects of observer effort (e.g., hours spent amassing
observations) and bird detectability (e.g., time of day) (Fig. 1). SI
Appendix documents the consistency of our findings with other
approaches and their robustness to our modeling choices. While
these adjustments do not estimate actual population sizes, they
do generate data on the relative abundance of bird populations.
By studying how the relative abundance of birds is affected by
pollution, we can infer the impacts on absolute abundance by
combining our estimates with independent estimates on bird
population sizes.
The abundance estimates are combined with the US EPA’s

ground-level pollution monitor readings and states’ pollution
regulation information. These data allow us to construct a lon-
gitudinal database that tracks month-over-month changes in bird
abundance, air quality, and regulation status for 3,214 counties
over a 15-y time span. The longitudinal nature of our data allows
us to identify the effect of air pollution using a “within” estimator
that links a county’s changes in bird abundance to changes in air
pollution. We use a research design that flexibly accounts for
spatial (3,214 counties), temporal (15 y), and seasonal (12 cal-
endar months) patterns in the data, constructing a three-way
interactive fixed effects estimator that controls for all observ-
able and unobservable confounding factors within a county–year,
season–year, and county–season. Specifically, county–year fixed
effects control for differences in attributes across counties within
each year, such as conservation policies or land use (e.g., im-
pervious surfaces, forest, and cropland). Season–year fixed ef-
fects control for changes in a season from one year to the next

that are common across all counties, such as changes in average
summer ozone or mean abundance of breeding birds. Finally,
county–season fixed effects control for all county-specific sea-
sonal trends, such as local seasonal variation in observer activity
and seasonal trends in bird abundance due to migration. We also
control for contemporaneous changes in weather elements in-
cluding temperature and precipitation. The weather controls and
the rich set of fixed effects control for a large set of (potentially
unobservable) ecologically relevant factors that affect abun-
dance, leaving variation in pollution that is as good as random.
Importantly, the focus on changes or trends in relative abun-
dance rather than absolute number of birds allows us to track the
abundance–pollution relationship without having to estimate
population sizes. We discuss estimation details assumptions in
SI Appendix.
We estimate the effect of ozone (O3) and fine particulate

matter (PM2.5) on relative bird abundance in a single regression,
controlling for the other pollutants, fixed effects, and tempera-
ture and precipitation (Fig. 2). We focus on these two pollutants
as they are the two most commonly found to cause health and
mortality risks in humans. Ozone is strongly negatively associated
with bird abundance (Fig. 2A). One SD increase in ozone con-
centrations (8.4 parts per billion) is associated with a 0.117 SD
decrease in bird abundance (P < 0.01, 1 SD bird counts per
checklist = 98.4), and the relationship is linear over the range of
ozone levels in our dataset. We find no evidence for an associ-
ation with PM2.5. Importantly, this initial analysis of contempo-
raneous (i.e., month-of) effects of pollution on relative
abundance of birds does not capture longer-term damage caused
by pollution.
We next investigate avian responses to changing ozone levels

in response to the NBP, which imposes a cap on emissions of
ozone precursors from 1 May through 30 September. The NBP
has affected ∼1,000 combustion units in the eastern and mid-
western United States starting in 2003 (Fig. 1). To estimate the
impact of the NBP, we use a triple difference approach that
explores treatment versus control comparisons along three di-
mensions: 1) states that participated in the NBP versus states
that did not, 2) summer months when the NBP restrictions are in
place versus winter months when they are not, and 3) years after
2003 when the NBP came into effect versus years before it went
into effect (9). In combination, these comparisons allow us to

Fig. 1. The spatial distribution of bird abundance. County colors indicate ventiles of bird abundance across all years. Darker colors indicate greater abun-
dance. The set of states outlined in solid blue are those subject to the NBP. The set of states outlined in dashed black are the control states. The states not
within the blue or black areas are omitted from the analysis due to potential atmospheric transport of pollution (9). The states omitted from the NBP analysis
are Georgia, Iowa, Maine, Mississippi, Missouri, New Hampshire, Vermont, and Wisconsin.
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isolate the changes in pollution and bird abundance that are
specific to NBP-affected states and specific to months when the
NBP market is operating. The triple difference approach is robust
to differential trends in bird abundance due to differences in spe-
cies composition in NBP states versus control states. For example,
the triple difference approach allows us to still estimate the causal
effect of the NBP despite the observed differential declines in
western versus eastern birds (24). The critical assumption is that in
the absence of the NBP program, the difference in summer bird
abundance trends between NBP and control states would have
evolved similarly to the difference in winter trends.
The NBP decreased ambient ozone concentrations in the av-

erage county by 0.496 SD (4.2 parts per billion) (P < 0.01) and
increased bird abundance by 0.235 SD (P < 0.01) (Fig. 3A). The
NBP had a positive effect on land bird abundance (0.270 SD, P <
0.01), while the estimated impacts on waterfowl (−0.057 SD, P =
0.585), shorebirds (0.056 SD, P = 0.327), and waterbirds (−0.002
SD, P = 0.972) are small and not statistically significant. In ad-
dition, we find statistically significant positive effects of the NBP
on birds with a mass less than 142 g, which is approximately the
mass of a northern flicker Colaptes auratus cafer or a ring-necked
dove Streptopelia capicola. Birds with mass less than 142 g cor-
respond to the first three quartiles of bird mass distribution (less
than 16 g [0.217 SD, P < 0.01], 16 to 38 g [0.201 SD, P < 0.01],
and 38 to 142 g [0.235 SD, P < 0.01]). We do not find evidence
that birds weighing more than 142 g are affected by the NBP
(0.016 SD, P = 0.819). This is consistent with the positive effect
on land birds, which mostly fall into the smaller bird groups (85.6%
of land birds in our sample are less than 142 g). One potential
mechanism consistent with previous research is that ozone reduces
insect abundance (26) and would thus reduce abundance of land
birds which tend to be the most insectivorous group. We further
find that the effect on migratory birds (0.149 SD, P = 0.030) is
greater than on resident birds (0.104 SD, P = 0.064), although the
estimates are not statistically distinguishable from each other.
Our results suggest that environmental regulations primarily

designed to protect human health can generate substantial
conservation cobenefits for other species. To further explore the
generality of bird–ozone relationships at national scales since
1980, we use a three-pronged approach. See SI Appendix for a

full description of the instrumental variable (IV) approach used.
First, by converting the NBP program’s effects on ozone and bird
abundance into the direct effect of ozone on bird abundance, we
show that each 0.496 SD increase in ozone is associated with a
0.235 SD decrease in bird abundance (Fig. 3A), translating to a
0.235/0.496 = 0.474 SD decrease in bird abundance for every 1
SD increase in ozone (Fig. 3B). Second, we simulate a back-of-
the-envelope counterfactual scenario in which ambient ozone
pollution is held constant at its 1980 level, the year when ozone
was first measured and regulated by EPA, instead of following
the actual pollution trajectories driven by air quality regulations
like the NBP and Clean Air Act. Third, we then compare this
counterfactual with recent estimates which reported the loss of
2.9 billion birds from 1970 to 2018 (24).
Ozone has, on average, declined by 0.13 parts per billion

per year between 1980 and 2018, with the largest declines seen in
the eastern states that were regulated by the NBP (Fig. 4B). In
the absence of regulation-driven ozone reductions between 1980
and 2018, bird populations would have declined by an additional
1.5 billion: 50% more than if ozone concentrations had remained
the same (Fig. 4A). As such, 20% of the current bird population
of ∼7 billion individuals can thus be attributed to improvements
in ozone concentrations over the past 40 y. The observed and
counterfactual bird trends begin diverging more rapidly in the
2000s when pollution regulation policies, such as the NBP,
accelerated ambient ozone concentration improvements.
Several points on the interpretation of our abundance–decline

results bear mentioning. Birds’ responses to air pollution are
likely to occur through a number of mechanisms and at a number
of different timescales. We expect some mechanisms may result
in rapid effects, for example, reduced ability to forage, move-
ment to a less optimal local habitat, or the death of birds in
poorer health. However, some mechanisms may take time, such
as increased mortality of healthier birds due to long-term accu-
mulation of pollution throughout a year or reduced reproductive
productivity due to poorer body condition. The measures of
relative bird abundance will reflect a combination of these short-
term and long-term processes.
Although we are unable to pin down the exact mechanisms in

this study, we can rule out several alternative explanations. First,

Fig. 2. The association between bird abundance and different pollutants. (A) Ozone and (B) fine particulate matter. The line is the estimated best fit line
from a linear regression of bird abundance on both pollutants, weather variables, and fixed effects. The points correspond to the mean values of the pol-
lutant and bird abundance within each pollutant decile after removing the effect of the other pollutant, weather variables, and fixed effects. SEs are
clustered at the state–season level and robust to heteroskedasticity. The regressions are weighted by the number of checklists in a given county–year–month.
***P < 0.01, **P < 0.05, *P < 0.10. The number of observations is 92,072.
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our results are unlikely to be explained by reduced visibility or
detectability of birds during high-ozone events. Ozone is a part of
smog but is effectively invisible. The visibility effects of smog
come from particulates like PM2.5 (e.g., black carbon), which we
have controlled for in our regressions (Fig. 2 and SI Appendix,
Table S4). Also, most bird detections during surveys are based on
auditory, not visual, cues (e.g., songs and calls) making visibility
less of an issue for detection. Second, it is possible that high
levels of ozone may cause birds to hide or reduce their pro-
pensity to sing and thus reduces the likelihood that they are
spotted. However, these hiding behaviors are most likely to be
transient as it is not feasible for birds to change their behavior at
a monthly scale—they need to forage, defend territories, and
feed their young. Therefore, even if an extreme ozone event did
affect behavior briefly, effects would not be consistent over the
month, which is the time frame of our analysis. Finally, we note
our findings are not explained by a change in human birding
effort, such as time spent birding, or distance traveled, which we
controlled for in constructing the abundance measure (Fig. 1).
As individual countries and the global community writ large

struggle to address a multitude of complex social and environ-
mental problems with limited resources, we are challenged to
identify interventions that can deliver benefits on multiple fronts.
We have shown that air quality improvements in the United States
have significantly stemmed the decline in bird populations. This
suggests that further improvements in air quality could meaning-
fully contribute to efforts to halt or reverse widespread declines in
wildlife populations. We contend that these conservation cobenefits
from air pollution regulation may be substantial.

Although our study investigated the impact of pollution regula-
tions on bird populations, we did not examine the ultimate value of
the associated changes in ecosystem services provided by more ro-
bust bird populations. These bird-provisioned ecosystem services,
which include pollination, seed dispersal, insect control, and nutrient
transfer, can be substantial at local and regional scales (29–31). Yet
these cobenefits are rarely acknowledged in cost–benefit analyses of
air pollution regulation, although they are clearly required for ac-
curate assessment of the full suite of benefits. Fully estimating the
economic value of species conservation is imperative to the design
and implementation of well-designed air pollution policy. This work
provides a first step toward quantifying these values.

Methods
Data. Our data on bird counts come from the eBird Reference Dataset (ERD)
(32). The ERD is a citizen science dataset consisting of reports from eBird
users detailing information on characteristics of their birding trips as well as
the species and quantity of birds seen. We call each separate report of birds
in the dataset a “checklist.”

Our data on pollution come from the US EPA’s Air Quality System data-
base, which documents ground monitor readings of ambient pollution lev-
els.* We measure pollution concentrations for each county by spatially
averaging readings from all monitors within 20 miles of the county’s cen-
troid, with the inverse of distance as weights. We use data on states’ NBP
regulation status from ref. 9. Our data are available at https://www.
openicpsr.org/openicpsr/project/125422/version/V2/view.

Fig. 3. (A) Effects of the NBP on ozone and bird abundance in SD units. (B) Implied effects of ozone from results inA, as calculated using an IV approach that combines
the effect of the NBP on ozone and the effect of predicted ozone on bird abundance. Birds are classified into groups following previous work (24). Bird groups by mass
are divided into four quartiles according to their mass distribution. The black bars indicate 95% confidence intervals. SEs are clustered at the state–season level and
robust to heteroskedasticity. The regressions are weighted by the number of checklists in a given county–year–month. The IV first stage F statistics in estimating the
effect of NBP on bird groups from the second to the last row range from 22.39 (mass < 16 g) to 22.67 (shorebird). ***P < 0.01, **P < 0.05, *P < 0.10.

*https://aqs.epa.gov/aqsweb/airdata/download_files.html.
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Methods: Bird Abundance Estimation.Our basis for estimating bird abundance is
a database of 11 million eBird checklists across the United States. These data
reflect birding effort and preferences in addition to objective bird counts.
Controlling for birding checklist characteristics is thus important for recovering
bird abundance (33–35). We estimate the relationship between bird abundance
and air pollution by first adjusting for birder effort in the eBird dataset.

We begin by using complete checklists in the eBird data to predict the
average count of birds in a county–month–year (e.g., May 2015 in Orange
County, CA) conditional on reported characteristics of the checklist and ef-
fort by the birder group. We model bird counts in the eBird data as a Poisson
process that is jointly determined by a function f of birder effort, detect-
ability of birds, true bird abundance, and a random component e (28):

#  birds  observed = exp{f(effort, detectibility, abundance, e)}.
To take this model to the data, we proxy for effort and detectability using
data reported in the eBird checklists:

#birds  observedcohdmy = exp(βdhourscohdmy + βnnumber  of  observerscohdmy

+ ζh + Γcmy + ecohdmy).
The left-hand side is the number of birds reported in an eBird checklist
by birder group o in county c, at hour of day h, on day of month d, in month
of year m, and in year y. The control variables in the Poisson model address
different margins for how observers can affect the number of birds they see
per trip. hourscohdmy is the time spent birding by the group, which controls

for the length of time spent observing. number  of  observerscohdmy is the

number of people in the group, which addresses the group’s intensity at any
given time. ζh is an hour-of-day fixed effect that controls for all variables
common across days within an hour of day, such as average bird detect-
ability or ability to observe birds in day versus night; these controls address
differential bird activity or observer ability to detect birds depending on the
time of day. ecohdmy is the random error term.

We are interested in the Γcmy estimates, i.e., the county-by-month-by-year
fixed effects, which captures bird abundance at the county–month–year
level after conditioning on the effort variables and hour-of-day fixed effect.

To operationalize the estimation, we log-linearize the Poisson equation
and estimate the model with ordinary least squares (28):

log(#birds  observedcohdmy) = βdhourscohdmy + βnnumber  of  observerscohdmy

+ ζh + Γcmy + ecohdmy.

[1]

We then recover the estimated fixed effects Γ̂cmy, which are our measures of
bird abundance in each county–month–year.

The choice of model specification in Eq. 1 is meant to be simple and
transparent, and it does not capture all effort margins. Importantly, because
our goal is to estimate how bird abundance changes with air quality rather
than bird abundance per se, the effort adjustment variables included in the
estimation need not be comprehensive as long as the omitted determinants
of eBird counts from Eq. 1 do not systematically correlate with month-over-
month changes in air pollution. SI Appendix, Table S3 reports that our es-
timation results are robust to alternative model specifications, such as
models using raw bird counts per checklist without any effort or detect-
ability adjustments, or models with data-driven variable choice (Least Ab-
solute Shrinkage and Selection Operator [LASSO]) using a large set of
potential effort variables.

Methods: The Association between Air Pollution and Bird Abundance (Ordinary
Least Squares). After we have recovered an estimate of Γ̂cmy, we estimate the
following model with (weighted) ordinary least squares for results reported
in Fig. 2 and SI Appendix, Table S2A:

std(Γ̂)cmy = βozonestd(ozone)cmy + βPMstd(PM2.5)cmy

                + g(weathercmy,ω) + θsy + νcy + σsc + ecmy.
[2]

The left-hand-side variable std(Γ̂)cmy is the estimated adjusted bird count at
the county–month–year level, standardized to mean 0 and SD 1 (i.e., a z
score) so that coefficient estimates are more easily interpretable. Our vari-
ables of interest are std(ozone)cmy and std(PM2.5)cmy, standardized monthly
average concentrations of ozone and fine particulate matter. We use the
standardized values so that we can compare the relative magnitudes
of βozone and βPM since the different pollutants have different units of
measurement. The coefficients can be interpreted as the SD change in
bird abundance from a 1 SD increase in ozone or particulate matter.
g(weathercmy,ω) is a set of weather variables—average daily temperature
and precipitation in a county–year–month—that flexibly control for how
weather may affect pollutant concentrations and bird abundance. For
temperature, we include 10 bins corresponding to each decile of the tem-
perature distribution; for precipitation, we include 5 bins corresponding to
each quintile of the precipitation distribution. θsy is a set of season-by-year
fixed effects that control for common characteristics of seasons in all
counties in a year, such as weather or pollution seasonality. νcy is a set of
county-by-year fixed effects that control for unobserved factors common
within a county in a given year, such as county-level conservation policies,
county average annual trends in pollution, or county-level year-to-year
changes in habitat. σsc is a set of season-by-county fixed effects that control
for county-specific seasonal fluctuations in pollution and other factors that
may affect bird abundance. This model specification is adapted from ref. 9,
which used the exact same set of controls, combined with an IV approach
[which we discuss in Methods: The Effect of the NBP (IVs)], to study the

Fig. 4. (A) The observed trend in bird populations from ref. 24 as a solid line and the counterfactual trend if ozone concentrations held at their 1980 levels as
a dashed line. The shaded areas correspond to the 95% confidence interval for each where the 95% confidence intervals are derived from the cluster-robust
SEs associated with the top estimate in Fig. 3B. (B) The statewide average annual change in ozone concentrations at US EPA monitors between 1980 and 2018.
Blue indicates decreases in ozone; red indicates increases in ozone.
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impact of the NBP program on human healthcare use and health outcomes.
ecmy is the error term. In all specifications, the estimated SEs are robust to
heteroskedasticity and clustered at the state–season level, which allows for
arbitrary correlation in the error term within a state–season. We weight
observations by the number of checklists in a county–year–month.

Several econometric assumptions are required for estimates of βozone and βPM
to be unbiased and consistent. The first assumption is that E[std(ozone)cmy×
ecmy

⃒⃒
controls, fixed  effects] = 0 and E[std(PM2.5)cmy × ecmy

⃒⃒
controls, fixed

  effects] = 0. In words, variation in air pollution is orthogonal to omitted
determinants of bird abundance after conditioning on the weather controls
and the set of fixed effects we included in Eq. 2. If an omitted variable is
time-invariant (e.g., location) or varying within a county annually (e.g.,
year-over-year changes in annual migration patterns), it is controlled for by
the county-by-year fixed effects. If an omitted variable is a recurring sea-
sonal trend within a county (e.g., breeding behavior in the summer), it is
controlled for by the county-by-season fixed effects. If an omitted variable
is varying over time in a way that is common across all counties (e.g., federal
conservation policy), it is controlled for by the season-by-year fixed effects.
For our first econometric assumption to be violated, there must be a variable
omitted from the regression that is correlated with both pollution and our

estimates of bird abundance Γ̂cmy while also varying within a county, within
each year, and within each season.

The second econometric assumption is that there is no nonclassical
measurement error induced by the effort adjustment procedure such that it
becomes correlated with pollution conditional on our ordinary least squares

(OLS) controls and fixed effects. We can write the Γ̂cmy estimate as a com-
bination of the true log average bird abundance in a county–month–year

̃log(#birdscmy ) and measurement error «Γcmy, which may be a function of

other variables that we do not control for in estimating Eq. 1:

Γ̂cmy = ̃log(π#birdscmy) + «Γcmy . [3]

Our second econometric assumption states that E[«Γcmy × std(ozone)cmy

⃒⃒
controls,

fixed  effects] = 0 and E[«Γcmy × std(PM2.5)cmy

⃒⃒
controls, fixed  effects] = 0. In Eq. 3,

any systematic errors in our estimates of bird abundance that occurs at the
county–year level (e.g., we systematically overestimate or underestimate ac-
tual bird abundance in Los Angeles County in 2006) will be controlled for by
county-by-year fixed effects. If the error systematically occurs at the county–
season level (e.g., we systematically overestimate or underestimate actual
bird abundance in Los Angeles County every summer), it will be controlled
for by the county-by-season fixed effects. If the error systematically occurs
across all counties in a given season (e.g., we systematically over or under-
estimate bird abundance in all counties in summer 2009), it will be con-
trolled for by season-by-year fixed effects. The econometric assumption is
thus similar to the previous one: that any omitted variable correlated with
actual bird abundance (which will be captured by «Γcmy in Eq. 3) is not varying

within a county, within each year, and within each season, after controlling
for the weather variables.

Under these econometric assumptions, βozone and βPM reflect changes in
bird abundance given changes in ozone and PM2.5. Importantly, these as-
sumptions do not require estimation of the true level of abundance, only
that any variation in estimated bird abundance that is correlated with pol-
lution, after conditioning on the weather controls and fixed effects, is not
caused by other factors.

While the validity of these assumptions cannot be directly tested, we
report two sets of robustness checks in SI Appendix, Tables S2 and S3. First,
we report βozone [both OLS estimates and IV estimates as detailed in Methods:
The Effect of the NBP (IVs)] from a range of alternative fixed effects in the es-
timation of Eq. 3, such as state-by-year fixed effects, quarter-of-sample fixed
effects, and/or month-of-sample fixed effects. Second, we estimate alternative
versions of Eq. 1 using different effort adjustment specifications—such as using
raw bird counts per birding checklist without effort adjustments, a Poisson
regression without log-linearization, and models with data-driven choice
(LASSO) of effort variables—and we report βozone estimates with these al-
ternative effort adjustment specifications.

In the next section, we describe an IV approach to estimate the impact of
the US EPA’s NBP on air pollution and bird abundance, as well as the implied
effect of air pollution on bird abundance. Unlike the OLS approach, which
uses all variation in ozone after parsing out fixed effects and weather
controls, the IV approach further restricts to policy-induced pollution vari-
ation. Under the assumption that the NBP is a valid instrument for air pol-
lution (i.e., the NBP strongly affects air pollution, and it influences bird
abundance only through changes in air pollution), the IV provides consistent

estimates of βozone that are free from omitted variable and classical mea-
surement error concerns.

Methods: The Effect of the NBP (IVs). In Fig. 3 and SI Appendix, Table S2B,
we employ an IV approach. The IV serves two general purposes. First, it
tells us the impact of the NBP on air pollution and bird abundance.
Second, under the exclusion restriction assumption that NBP affects bird
abundance only through its impact on air pollution, the IV approach
overcomes potential omitted variable bias and classical measurement
error problems we mentioned in the previous section, and it yields
consistent estimates, i.e., that the estimator converges in probability to
the true parameter value, of the impact of air pollution on bird
abundance (36).

In the first stage of the IV we estimate the effect of the NBP on monthly
average ozone:

std(ozone)cmy = βNBP1(NBPcmy) + g(weathercmy,ω) + θsy + νcy + σsc + ξ1
ststage

cmy .

std(ozone)cmy is the standardized monthly average ozone concentration
in county c, month of year m, and year y. 1(NBPcmy) is an indicator variable
equal to 1 if county c is in a state under NBP regulation and if the current
month–year is one where the NBP is in effect.† The rest of the variables

are identical to the previous equation. ξ1
ststage

cmy is the error term. βNBP is the

effect of the NBP on ozone concentrations and is the top estimate in
Fig. 3A.

In the second stage of the IV we estimate the effect of predicted ozone
from the previous equation on adjusted bird counts:

std(Γ̂)cmy= βIVozonestd( ̂ozone)cmy +g(weathercmy,ω) + θsy + νcy + σsc + ξ2
ndstage

cmy .

βIVozone recovers the effect of ozone on bird abundance using variation
in ozone concentrations generated by the NBP. Results from this speci-

fication are plotted in Fig. 3B. Depending on the outcome, std(Γ̂)cmy

accounts for either total bird counts, waterfowl, land birds, shorebirds,
waterbirds, migrants, residents, birds with mass under 16 g, birds
with mass 16 to 38 g, birds with mass 38 to 142 g, or birds with mass
over 142 g.

The rest of the estimates in Fig. 3A come from the reduced form version of
the IV, where we regress adjusted bird counts directly on the NBP indicator
variable and our set of controls and fixed effects:

std(Γ̂)cmy= βNBP1(NBPcmy) + g(weathercmy,ω) + θsy + νcy + σsc + ξreduced  formcmy .

This estimates the effect of the NBP directly on the abundance of different
bird groups.

Methods: Trends in the Bird Population under Counterfactual Pollution Levels.
In Fig. 4A, we compute trends in the total bird population under
the counterfactual scenario in which the ground-level ozone concentration
is held constant at its 1980 level. The trends are computed using the
following steps.

First, we estimate annual trends in ozone concentrations between 1980
and 2018. We begin with monitor-year level ozone concentrations, and we
use the following equation to estimate year-to-year changes:

Ozoneiy = ∑2018
τ=1980

βτ1(y = τ) + αi + ηiy.

The dependent variable is the average 8-h concentration of ozone at monitor
i in year y. Becausemonitors differ by their initiation date, we includemonitor
fixed effects (αi) to account for cross-sectional differences in average pollu-
tion levels across monitors in the unbalanced panel. ηiy is the error term.

†This is essentially a triple difference strategy that compares counties in and out of NBP-
affected states, summer season (May through September) and nonsummer season, be-
fore and after year 2003. We use 1 y (2002) of pretreatment data, which is the first year
when eBird data became available. In unreported analysis, we have confirmed that both
our OLS and IV findings are qualitatively unchanged if we drop 2002 data and instead
use a double difference strategy (NBP and non-NBP counties, summer and nonsummer
seasons). These additional results are available upon request. We prefer the triple dif-
ference strategy as it helps address preexisting differences in pollution and bird abun-
dance across the treatment and comparison groups prior to the introduction of the NBP
program. Any year-to-year changes in data quality from 2002 are accounted for by
county-by-year fixed effects.
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Intuitively, the βτ values (with the regression constant added back) tell us the
average annual level of ozone across all monitors by exploiting variation
within a monitor and over time.

Next, for each year since 1980, we calculate the percentage difference

between the estimated ozone level and the 1980 level: (β1980−βτβ1980
) × 100. The

predicted percentage change in bird population—that is, the difference
between the observed and counterfactual populations if ozone is held at its
1980 level—is given by

Δ%(Populationτ) = βIV(%)
ozone × (β1980 − βτ

β1980
) × 100,

where βIV(%)
ozone is the percentage change in birds per 1 percentage point

change in ozone, an elasticity version of the original βIVozone estimate on an SD
bird – SD ozone scale. We then convert percentage population change
Δ%(Populationτ) to population change Δ(Populationτ) using historical
population estimates (24). The counterfactual trends are thus

Populationcounterfactual
τ = Populationobserved

τ + Δ(Populationτ),
where Populationobserved

τ is the observed population (24). To derive the 95%
confidence interval of the counterfactual trends, we repeat the steps above

while using the upper/lower 95% confidence interval of the βIVozone estimates
as reported in Fig. 3B. Finally, to smooth out noise in the trends estimates
due to year-to-year fluctuations in ozone levels, we estimate a locally

weighted regression (LOWESS) of Populationcounterfactual
τ on τ and plot the

smoothed value in Fig. 4A.

Data Availability. Data on states’ NBP regulation status have been deposited
in https://www.openicpsr.org/openicpsr/project/125422/version/V2/view/ (37).
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